Robust trajectory tracking control of a 6-DOF robotic crusher based on dynamic compensation
نویسندگان
چکیده
A robust controller is developed for the trajectory tracking control of a 6-DOF robotic crusher in task space. Firstly, dynamic model including mantle assembly and actuators derived by Lagrange method according to virtual work principle. In order simulate crushing behavior cone chamber, achieved ADAMS. Then, which contains compensation designed, convergence stability strictly proved based on Lyapunov theory. Finally, co-simulation used verify that proposed can solve problem uncertainties external disturbances well. Meanwhile, numerical simulation results illustrate able effectively reduce errors compared with computed torque controller.
منابع مشابه
Dynamic modeling and control of a 4 DOF robotic finger using adaptive-robust and adaptive-neural controllers
In this research, first, kinematic and dynamic equations of a 4-DOF 3-link robotic finger are derived using Denavit-Hartenberg convention and Lagrange’s formulation. To model the muscles, several springs and dampers are placed between the finger links. Then, two advanced controllers, namely adaptive-robust and adaptive-neural, which can control the robotic finger in presence of parametric uncer...
متن کاملAn Adaptive-Robust Control Approach for Trajectory Tracking of two 5 DOF Cooperating Robot Manipulators Moving a Rigid Payload
In this paper, a dual system consisting of two 5 DOF (RRRRR) robot manipulators is considered as a cooperative robotic system used to manipulate a rigid payload on a desired trajectory between two desired initial and end positions/orientations. The forward and inverse kinematic problems are first solved for the dual arm system. Then, dynamics of the system and the relations between forces/momen...
متن کاملTrajectory Generation and Tracking of a 5-dof Robotic Arm
The main problem in trajectory generation and tracking of robotic manipulators is to plan the trajectory and compute the required joint angles. Inverse kinematics modelling is usually adopted, though sometimes other approaches are needed due to the lack of reliability and accuracy of analytical methods. This paper presents a comparison between an analytical inverse kinematics based hybrid appro...
متن کاملDelay Compensation on Fuzzy Trajectory Tracking Control of Omni-Directional Mobile Robots
This paper presents a delay compensator fuzzy control for trajectory tracking of omni-directional mobile robots. Fuzzy logic control (FLC) of the robots is a suitable strategy for dealing with model uncertainties, nonlinearities and disturbances. On the other hand, in many robotic applications such as mobile robots, delay phenomenon is able to substantially deteriorate the behavior of system's...
متن کاملControl of a 2-DoF robotic arm using a P300-based brain-computer interface
In this study, a novel control algorithm, based on a P300-based brain-computer interface (BCI) is fully developed to control a 2-DoF robotic arm. Eight subjects including 5 men and 3 women perform a 2-dimensional target tracking in a simulated environment. Their EEG (Electroencephalography) signals from visual cortex are recorded and P300 components are extracted and evaluated to perform a real...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mechanical Engineering
سال: 2021
ISSN: ['1687-8132', '1687-8140']
DOI: https://doi.org/10.1177/16878140211004292